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For simplicity we assume that the system is represented by a regular cubic bed of
spheres of equal diameter (Fig. 1). The strains of this regular system of spheres have such
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features, that at every moment of time the relative displacements of the centers of these
spheres are perpendicular to the lines connecting the centers. Naturally, the position of the
lines connecting these centers is changed during the deformation of the bed of spheres.

In case the continuum description is introduced, it will be necessary to characterize the
macropoint with the directors, coinciding with the lines of sphere centers, that is one has to
analyze the continuum type, considered earlier by Ericksen and Truesdell {1].

In the plane case there are two directors &7 and &£, the angle between them being equal to
1. If the displacement velocity is u;, then the above kinematical condition of the absence of
relative displacements along the directors will have a form

(’?Lg) (?ug .
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Decomposing the tensor of displacement gradient du;/dx; into antisymmetrical and
symmetrical &;; parts, we transform the conditions (2.1) to the following

Z 3;;5?5? =, Z 8{;5?5? =0 (2.2)
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Further, the conditions (2.2) are equivalent to
£ = Agya, = —2Ccos . (2.3)

We use here such a coordinate system 1, 2 that the bisectrix of coordinate angle coincides
with the bisectrix of the angle y (see Fig. 1}.

According to the equation (2.3) the volume strain rate ¢ = &, +¢,, is connected with the
shear rate ¢, ,, that is we encounter the phenomenon of dilatancy, described by Reynolds 2]
in 1895. One may interpret the quantity A as the rate of dilatancy. If ¥ = n/2, shear failure
along the directors without volume changes is possible. If ¥ = n/3 the compression (and
associated shear) is prohibited-—the medium becomes a rigid one.
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The changes of the angle , associated with the relative position of the directors &, &4, are
defined by the condition d&? = {uy(x; + &, t) —ux;, t)} dt, that may be transformed to the
following

% ((ij—l/: = 2¢,, sin Y. (2.4)

We underline the fact that dilatancy is a kinematical restriction.

In considered continuum there is a restriction for stresses. On the plane cross-sections
with the directors as a normal, for instance £, the shear stress t* and the normal stress ¢* are
related to each other by Coulomb rule 10 = ko®, where 6 = sgnt®, k is the friction co-
efficient. This condition has a form

014(sgn 6,)sin = k(o +0, cos ) (Bkctgy # 1) (2.5)

where ¢ = 0, = 0,, according to the symmetry in elated coordinate system. The limita-
tion (2.5) in a general case (when y # 7/2) is distinct from the usual Coulomb law for
continuous media.

3. ELASTIC MEDIA WITH LOCAL SOLID FRICTION

If particles (grains) have different sizes and form an irregular bed, then one can imagine
such a situation that the strains of the materials are determined by the small elasticity of
grains, and there is slippage with solid friction among some particles. One can try to describe
such a case with the help of a continuum, at every macropoint of which there are at least two
types of motions, and to interpret the relative motion as a “‘slip”’.

The total stresses py; = g+ T are decomposed into two parts: ¢, and 7. The elastic
stresses gy, are connected with mean strains ¢;; according to the elastic law (with modulus K
and G). The plastic stresses 7, also cause elastic strains e¥, unequal, however, to mean
strains, In the last case the elastic moduli are K*, G* (K, G > K*, G*). The differences
&; = e;;—ef; form the plastic strains. The rates of plastic strains are unequal to zero and
connected with stresses through the following isotropic rule

& = [—31+ Aw)d; ;0. + 26,8 e)Aty (K =1,2) (3.1)

if the limit condition holds

JU)+ad; = 0. (3.2)

Here J, is the first, J', the second (deviatoric) invariant of the stress tensor. The function A,
defined as positive, is considered as an additional unknown quantity.

From the constitutive relations (3.1) and the limit condition it follows that volume and
shear strains take place simultaneously:

I, = AJIY) (3.3)

where I, is the first invariant of the strain rate tensor, I’, the second invariant of the strain
rate deviator tensor. Therefore quantity A may be interpreted as dilatancy rate.
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The mathematical model is completed by the equation of linear momentum. In the case
of small perturbations it has the following form

. (3.4)
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Here u; is the mean velocity of particle displacements. Let us compare the suggested model
and the elastic material with microstructure, considered by Mindlin [3]. It is seen, that
excluding asymmetrical features of the Mindlin model, the difference is the following one.
According to Mindlin micromotions are determined by the equation of linear momentum ;
that is the special motion of micromaterial is connected with its inertial properties. The
model considered here is associated to the case of local static equilibrium, when the inertial
forces are negligible compared with solid friction forces acting on the micromaterial.

The set of equations (3.1)43.4) was used for approximate analysis of the seismic wave
propagation in soils and rocks [4], the following consideration being realized. The usual
limit condition (3.2) is valid only in case of the compressive normal stress:sgnJ; < 0. In
case of periodic motion the sign of normal stresses may be changed. However in granular
media during the dilate strain there are local slips with solid friction, although generally
speaking, on other contacts between grains then during compression. For the purpose of
checking this effect we shall determine the coefficient o in the form: o = —agsgnJ,,
where o, has only positive defined values.

One may note that just the dilatant relation (3.3) introduces the variable normal plastic
stresses in shear waves. Approximate evaluation on the basis of the simple method of
harmonic linearization, which was used generally for dynamical analysis of systems with
solid friction, shows the following results [4]. If the role of solid friction is small then the
wave of fixed frequency propagates without dispersion (as in usual elastic media), and the
attenuation coefficient associated with transmitted distance, is proportional to the fre-
quency. Such a behavior of waves corresponds to the familiar features of seismic waves in
dry soils and rocks.

4. ASYMMETRICAL EFFECTS IN TURBULENT FLOWS

For the averaged description of turbulent flows let us assume the usual continuum
demand of possible choosing of such an elementary volume AV, whose dimensions are
much larger than the internal scale of microstructure (represented by the turbulent eddies),
but much smaller than the characteristic lengths of the flow considered. We assume that
microflows are described by the Navier—Stokes equations. Then for the establishment of
Reynolds macroequations it is necessary to integrate the balance equations of mass, linear
momentum and moment of momentum over the volume. We demand that the balance
equation for the moment of momentum for microflows has to be the consequence of the
balance equation of linear momentum (the tensors, included in Navier-Stokes equations,
are symmetric). That is the moment of momentum equation has to coincide with the
“vorticity equation”’ for a viscous fluid. From this requirement it follows the definition of
the inertial moment of fluid differential volume and the possibility to interpret the diffusive
transfer of vorticity as a couple-stress in usual viscous fluid.

The procedure of integration leads to solely choosing of the laws of averaging for the
quantities included in microequations. Thus, averaged density and averaged linear momen-
tum are introduced as averaged quantities over the volume. The mean velocity V] is equal to
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the averaged linear momentum divided by the averaged density and therefore also is the
quantity averaged over the volume. In the same way we introduce the averaged angular
velocity of turbulent eddies, distinct in general case from angular velocity of mean transla-
tion motion. In nonisotropic turbulence the existence of statistical orientation of turbulent
eddies introduces the additional averaged moment of momentum.

The averaging procedure of flows of linear momentum and of moment of momentum,
stresses, denoted by the symbol <. . .};, is fulfilled over the plane cross-sections of elementary
macrovolume. For nonisotropic turbulence the results of such a procedure depend on the
orientation of the plane compared with the characteristic vector of anisotropic turbulent
structure. Therefore, generally speaking, Reynolds stress tensor z;;, that is the averaged
pulsating transfer of linear momentum, may be asymmetric. For nonisotropic turbulence
the couple-stresses y;;, connected with pulsating transfer of micromoment of momentum
equal to I, ®,, are also essential. Here I is the moment of inertia and ®, is the angular
velocity of microparticles.

The set of averaged equations for flows of turbulent incompressible fluid has the
following form:

ovi
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Here O = $rot V, T;; are averaged viscous stresses, z;; = — {pvp;> — Reynolds stresses,
zy;;) their antisymmetric part, p;; = —<{I;®,,>;, v;— pulsating velocity, I}—moment of

inertia, w—effective angular velocity of pulsating rotations of the microparticles. The
equation for the moment of inertia I° of the considered fluid element can be written as

=
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As is usual in semiempirical theories, the set of equations (4.1)+(4.4) is supplemented by
the constitutive relations
oV, W, 0+ wy)
ax‘ + axk) b /'11) ijkl ax
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Here p is the pressure, v the kinematic viscosity, E,,,, the Levi-Civita axial tensor. The
transfer coefficients A;jy, Bij, Diju, depend on the microstructure of the turbulent fluid.
For their evaluation it is necessary to introduce the hypotheses of mixing kinetics in
turbulent flow. It is useful to note that the Prandtl’s idea [6] of impulse transfer and Taylor’s
idea [7] of vorticity transfer are complementary to each other in the case of account of
asymmetrical effects.

In this text we omit the possibility of asymmetric averaged viscous tensor T;; and of the
effects of nonhomogeneous fields of pulsating impulse and viscous microstresses [14].



676 V. N. NIkoLAEvSKII and E. F. AFANASIEV

5. ASYMMETRIC HYDRODYNAMICS OF DILUTE SUSPENSIONS

The movement of a fluid particle can be decomposed into three elementary parts:
translation, rotation and deformation. The suspended solid particle (of spherical form, for
simplicity) has, however, its own translational and angular velocities (that is connected with
distinct inertia of the suspended particle) and besides perturbs the deformation process of
the surrounding fluid. The third effect was considered by Einstein [8]. It is accounted by the
introduction of effective viscosity g, = u(1+2-5(1 —m)), see also [15].

To accounting for the difference between translating and rotationary motions of solid
and fluid particles it is necessary to consider the balance equations of mass, linear momen-
tum and moment of momentum separately for solid and fluid phases.

The mass balance equations for the phases have the forms:

omp, +6mplv‘”

J
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Here m s the saturation of elementary volume with the fluid ; superscript (1) denotes the
fluid phase and superscript (2) the solid one.
The linear momentum equations for phases can be written as

dIUE” ap 6m(1:j,-+0"},-)
__.% i _ R, 52
" g Mot o, ¢2)
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Here p is a mean pressure in the fluid, 7;;1s the symmetrical part of viscous stresses, of; the
antisymmetrical one. We underline that the introduction of this asymmetrical part is con-
nected with perturbations in stress-field in viscous fluid due to own rotations of suspended
particles. The force of interaction between the phases R; = a(v{" —v{¥)—bE,; v}V — v/
x (w, — V) can be evaluated by assuming the microstationary character of interaction of
suspended particles with surrounding fluid. The first term is associated with Stokes resist-
ance, the second one with the lift force. Here Q¥ = 4 rot »? is the mean angular velocity of
fluid element, @ is the angular velocity of own rotation of the sphere.

From the equation for moment of momentum of the suspension and the analogous
equation for moment of momentum of translational motion it is possible to find the field
equation for the internal moment of momentum which is reduced to the following one,

d,L,
1—
( m)p, dt

= mEUkO'fJ . (5.4)

Here (1 —m)p,L, = Np,Jay, p2J = (E)nr’p, is the moment of inertia of sphere with
radius r, N = (1 —m)($nr3)~ ' is the number of suspended particles per unit volume. Further,
we shall consider only plane flows.

The equation for internal moment of momentum of solid particles has the form:

d,w
p2J jjj = — w3 —Q;), 7 =8nriyu (5.5)
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In the considered case the constitutive relation for the antisymmetrical part of the
viscous stress tensor reduces to

mE;;;07; = —Ny(w; —Q(sl)) (5.6)

as it follows from equations (5.4) and (5.5). In a more general approach as is usual in asym-
metrical hydrodynamics [9-11] it is necessary to introduce the couple-stresses. By the way
in the paper [12] the couple-stresses were related to diffusion transfer of rotationary particles
through the fluid. However, we prefer to describe the relative translation of phases by
the separate equations of linear momentum.

If we linearize the set of equations (5.1)(5.5) and introduce the potentials of motion [13],
then it will be possible to write the equation for shear waves

52(‘9_‘/’_““+5V2¢) wat(a:// ue+5 'J/)
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Here ¥ is the potential of shear motion, 7, = (3)(r?/u)(p$p3/p,) the time of translational
relaxation, 7, = (i%)(r?/u)p? the time of angular relaxation, p, = myp?+ (1 —mg)pJ is the
effective mean density for equilibrium flows. The analysis of the operators in the equation
(5.7) leads to an evaluation of the flows with different characteristic times. Essentially, in
“frozen” flow (the limit deviation from Einstein’s case due to inertial forces) the suspension
behaves as a viscous fluid, but with the effective density equal to the mass of fluid phases per
unit volume mqyp? and with effective viscosity equal to u, + 6, where § = 3u(1 —m).

The effect of rotation is essential for the suspension of solid particles in gas media. The
relaxation times 7, and 1, has of the same order O(r%) when the radius of the particles r
approaches zero.

.7

V%//) = 0.

REFERENCES

[1} G. L. ErickseN and C. TRUESDELL, Exact theory of stress and strain in rods and shells. Archs ration. Mech.
Analysis 1, 295-323 (1958).
[2] O. ReyNoLDS, Phil. Mag. 20(5), 469481 (1885).
{3] R. D. MINDLIN, Micro-structure in linear elasticity. Archs ration. Mech. Analysis 7, 51-78 (1964).
[4] B. H. Hukonaesckuii, MOHOXpOMaTHYECKHE BOJIHbI B YIPYroil Cpefie C JOKAJIbHBIM MPOSBIEHHEM
CyXxoro TpeHusi. Husc. ncypn., Mex. msepooco meaa, 4, 85-92 [1968].
[S] O. ReyNoLDs, On the dynamical theory of incompressible viscous fluids and the determination of the
criterion. Phil. Trans. R. Soc. 186, 123-161 (1895).
[6] L. PRANDTL, Fithrer durch die Stromungslehre. Braunschweig, Vieweg (1949).
[7] G. 1. TaYLOR, The transport of vorticity and heat through fluids in turbulent motion. Proc. R. Soc. A135,
685-705 (1932).
[8] A. EinsTEIN, Eine neue Bestimmung der Molekiildimensionen. dnn. Phys. 19, 289-306 (1906).
[9] A. C. ERINGEN, Simple microfluids. Int. J. engng Sci. 2, 205--217 (1964).
[10] C. TRUESDELL, Six Lectures on Modern Natural Philosophy. Springer, New York (1966).
[11] 3. JI. A3spo, A. H. Bynbirud, 1 E. B. KyBuunHckuil, ACHAMMeTpHYHAA THOpOAXHAMMKA. [lpuxa.
Mamem. u mex., 29, 297-308 [1965].
{12] M. M. llInuomnc, K ruapoauHaMuke >KMOKOCTH ¢ BHYTPEHHMM BpalieHuem. XKIT®d, 51, 258-265
[1965].
[13] E. ®. Adanacwes, u B. H. Hukonaesckuii, K NnocTpoeHHIO aCHMMETPMYHOH THAPOIKHAMMKU
CYCMEH3HH C BPALAIOIMMHUCA TBEPABIMHU YacTULIAMH, B. ¢6. ‘‘ [TpobneMbl rHAPONMHAMHKH U MEXAHUKH
crnoiusix cped. K 60-netuto JI. . Cenosa’. M., <<Hayka> [1969].



678 V. N. NIKOLAEVSKI and E. F. AFANASIEV

[14] B. H. HuxonaeBckuii, ACUMMETPUYHAS MEXAHMKA KOHTHHYYMOB H OCpPEAHEHHOE OITHCAHME
TypOyneHTHBIX TeueHuit., [LAH CCCP, 184 (6), 1304-1307 (1969).

[15] B. H. IlokpoBcknii, YTOYHEHHE PE3YNbTATOB TEOPHHM Bs3koctu cycneHzui. HIOTd, 55, 651-653
(1968).

(Received 9 September 1968)

AGcerpakT—IIpuBeeHbl 4€ThIpe MPHMeEpa CIUIOMIHBIX CPeld, OJIS OMUCaHMs NOBEAECHUS KOTOPBIX HeoOXo-
auMo npuberaThb K aHAJTH3Y HX MHKPOCTPYKTYPbI. PaccMOTpeHbl ocobeHHOCTH AedopMalvil ¥ HATTPAKEHHH
OPHEHTHPOBAHHOTO KOHTHHYYMa, MOZE/IHPYIOIHETrO MOBEIACHHE PETYJISAPHON YITAKOBCKH XECTKUX cdep, Ha
KOHTaKTax MEX/JIy KOTOPBIMM HOEHCTBYET CyXO€ TPEHME. XapaKTEPHBIH Ul Tako# cpeabl KHHEMATHYCCKUI
3¢ dekT aMIaTaHCHH BBOAMTICA [ajiee B MOAEJb yNpyro# cpeabl C JIOKANLHBIMH TIPOSBIEHHAMH CyXOro
Tpenusa. PaccMoTpeHue nepexona ot MukpoypasHeHuii Hasbe-CTokca k MakpoypaBHeHHAM PeltHonbaca
B CllyYae aCHMMETPHYHOTO TypOYNeHTHOTO MOTOKA XHAKOCTH IOKAa3bIBAET, YTO TEH30P PeHHONBACTOBLIX
HanpskeHut, BooOILe roBOps, HECHMMETPHYEH, ¥ JAOMKHO ObITH BbIBEACHO ypaBHeHHe 0a/laHca MOMEHTa
KOJIHYECTBA OBHXEHHMA. Monenb OBYX B3aHMONPOHMKAIOLIMX KOHTHHYYMOB (KHAKOH M TBepaolt ¢a3s)
i1 pa3baBleHHBIX CYCMEH3uM TBepAbIX JacTUL o6o0iaeT aHanus DHHIITEHHA 418 1aMUHADHBIX De3uue-
PUMOHHBIX IOTOKOB Ha Clyyall MHEPLHMOHHOM penakcalMy W3-3a PalIMYds IOCTYNATENbLHBIX ¥ BpallaTte
TbHBIX ABHXCHUN a3,



